

Semantic Building Blocks for 21st Century Building Engineering

Lawrence Berkeley National Laboratory
October 2, 2009

Mark Palmer

Leader, Computer Integrated Building Processes Group
Building and Fire Research Laboratory
National Institute of Standards and Technology

Outline

- Introduce NIST and BFRL
- Challenges of transitioning construction to model-driven integrated design and delivery
- Semantic foundation for collaborative management of virtual models
- Collaborative project to develop and test Reference Information Models for:
 - building envelop, thermal model, HVAC systems, equipment and project QC

NIST At A Glance

Gaithersburg, MD

Boulder, CO

- NIST Research Laboratories
- Baldrige National Quality Award
- Manufacturing Extension Partnership
- Technology Innovation Program

- ~ 2,900 employees
- ~ 2,600 associates and facility users
- ~ 1,600 field staff in partner organizations
- ~ 400 NIST staff serving on 1,000 national and international standards committees

The NIST Laboratories

NIST's work enables

- Advancing manufacturing and services
- · Helping ensure fair trade
- Improving public safety and security
- Improving quality of life

NIST works with

- Industry
- Academia
- Other agencies
- Government agencies
- Measurement laboratories
- Standards organizations

BFRL Mission

To promote U.S. *innovation* and *competitiveness* by anticipating and meeting the:

- measurement science,
- standards, and
- technology

needs of the U.S. building and fire safety industries in ways that enhance economic security and improve the quality of life.

Measurement Science

rtual Cement and Concrete Testing Laboratory

Integrating Sphere for Service Life Prediction of Materials

Tri directional Took (

Tri-directional Test Facility

Large-Scale Structures

Testing Laboratory

Construction Site Metrology

Residential Fuel Cell Testing Laboratory

Cone Calorimeter

Scope of Measurement Science

The term *measurement science* includes:

- the development of performance metrics, measurement methods, predictive tools, and protocols as well as reference materials, data, and artifacts
- the conduct of inter-comparison studies and calibrations
- the evaluation and/or assessment of technologies, systems, and practices
- the development and/or dissemination of technical guidelines and basis for standards, codes, and practices—in many instances via testbeds, consortia, and/or other partnerships with the private sector

Other Agency Partners

Federal R&D Agenda for Net-Zero Energy, High-Performance Green Buildings

Goal 1: Develop enabling measurement science

Goal 2: Develop NZEB building technologies and strategies

Goal 3: Develop scientific and technical basis for significant water use reduction

Goal 4: Develop processes, protocols and products for building materials that minimize waste and impact

Goal 5: Develop knowledge, technologies and practices to promote occupant health, comfort and productivity

Goal 6: Enable technology transfer for net-zero energy, high-performance buildings

Key *Drivers* for Change in Construction

- Energy independence, environmental security, and sustainability
- Renewal of Nation's aging physical infrastructure
- Demand for better quality, faster, and less costly construction
- Competition due to globalization and offshoring
- Homeland security and disaster resilience

Key Barriers to Change in Construction

- Waste, inefficiency and industry fragmentation
- Minimum first-cost mindset precludes lower-cost investment options based on life-cycle performance
- Prescriptive standards and codes stifle innovation and competitiveness
- Low profit margins and R&D investment

NIST Partnerships with the Construction Industry

(Conceived by CII and NIST in 1999)

Board of Advisors

Benchmarking and Metrics Committee

Breakthrough Strategy Committee

- Workshops and Conferences
- Research Teams
- Capital Projects Technology Roadmap
- Automating Equipment Information Exchange
- Intelligent and Automated Construction Job Site
- Plant and Building Information Modeling
- Workshops and Conferences
- Building and Fire Codes and Standards
- Technical Guidelines
- Measurement Techniques
- Performance Prediction Tools
- · Committees, Councils, and Boards
- Workshops and Conferences
- Collaborative Research
- Publications
- Working Groups

Productivity-Driven Challenges

- Lack of effective performance measures
 - some report 40-yr decline in construction productivity (-0.6% per year); Increase in non-farm productivity (+1.8% per year)
 - significant improvement in some work processes
- 25-50% waste and inefficiencies in labor & material control
- \$17-36 B/yr cost of inadequate interoperability
 - in commercial and industrial construction alone
- Projected \$2 trillion cost-burden for infrastructure renewal
- Increasing global competition: 160% increase in Chinese contracts in U.S. and Europe during 2007
- Measurement science is lacking to measure impact of inefficient construction, new technologies and processes
- NIST requested National Research Council to establish a panel to:
 - identify and prioritize <u>technologies</u>, <u>processes</u> and <u>deployment activities</u> with greatest potential to advance significantly productivity and competitiveness of the capital facilities sector
 - Advancing the Competitiveness and Efficiency of the U.S. Construction Industry (October 2009)

BFRL Strategic Priorities

Measurement Science for:

- > Net Zero Energy, High-Performance Buildings
- Advancing Infrastructure Delivery
- Predicting Life Cycle Performance of Infrastructure Materials
- Innovative Fire Protection
- Disaster-Resilient Structures and Communities

Virtual Project Data Integration Testbed – AECOO Collaboration

Identified Major Gaps in Measurement Science and Information Standards for Multidisciplinary Collaboration to Improve Building Energy Performance

Demo Test Model Description:

- o Simplified GSA 1800 F St. building
- 4 floors
- o 4 story atrium
- Use of virtual space boundaries

Baseline BIM

Add overhangs on south and west facade

Change glazing type

Change roof construction type

AECOO Testbed - Industry and Government Partnership

Demonstrated at the National Building Museum and in webinars, March-May 2009

BPEA IDM- Process Model

BPEA IDM- Process Model (cont'd)

Industry Data Sources for Space/Construction Types

DNA Star Space Tigge	ASHRAE 62.1	Trois J.E.Co. Europy Code	ASSHALSO.1	Decembra (M/AD)	Denning Stoner (Triby 20)	(prosper/2000/AE) (Trace 2.E)	Security (Mart/person) (Mart/person)	Float/person (Nost/person)	(Tree 24)	(SA Requirements (diss/RL) (This (SLT)
SMIA	Office fideday	Office:	DNo-Brosses	2.3	1.2	15	350	205	1.5	(0.15)
Open Diffice	Office coace	Office	Office-Open Flam	11	12	.10	180	200	15	5.15
Conference	Conference/rimening	Commercial Conference, Michiganyouse and Masting Control	Conference/Meeting Multipurpose	13	14-	47	146	1195	2	0.5
Classroom	because Distanço	Classrooms Lecture Training Vocations/Room	Classipon/Lacture/Training	54	17	50	345	195	1	STR.
Characters.	Lecture Character	Chinesens Lacture Drawing yearsons/Race.	For Peninenniary	13	17	8	TAR	135	3.	9.00

Sources of Space data: ASHRAE 90.1, ASHRAE 62.1, Title 24

Space classifications: GSA Star Space Type, Omniclass Table 13, IBC, IECC

Wall Type	Wall Number	Wall Number Descriptions	Layer ID (Outside to Inside)							
Curtain Walls	1	Spandrel glass, R-10 insulation board, gyp board	F01	F09	F04	102	F04	G01	F02	-
Curtain Walls	2	Metal wall panel, R-10 insulation board, gyp board	F01	F08	F04	102	F04	G01	F02	-
Curtain Walls	3	1 in. stone, R-10 insulation board, gyp board	F01	F10	F04	102	F04	G01	F02	-
Stud Walls	4	Metal wall panel, sheathing, R-11 batt insulation, gyp board	F01	F08	G03	104	G01	F02	-	-

Roof Type	Roof Number	Roof Number Descriptions	Layer ID (Outside to Inside)							
Sloped Frame Roofs	1	Metal roof, R-19 batt insulation, gyp board	F01	F08	G03	F05	105	G01	F03	-
Sloped Frame Roofs	2	Metal roof, R-19 batt insulation, suspended acoustical ceiling	F01	F08	G03	F05	105	F05	F16	F03
Sloped Frame Roofs	3	Metal roof, R-19 batt insulation	F01	F08	G03	F05	105	F03	-	-
Sloped Frame Roofs	4	Asphalt shingles, wood sheathing, R-19 batt insulation, gyp board	F01	F12	G05	F05	105	F05	G01	F03

Opaque Construction Source: ASHRAE Fundamentals Tables 17, 18, 19

- 1. In the process of mapping 90.1, 62.1, Title 24, and GSA Star Space Type. Will working with CEC and ASHRAE. ASHRAE contact? Ask Krishnan.
- CSI and ICC almost done with version 1 of Omniclass mappings. Will be integrated when complete.
- 3. Space and construction tables will be provided to vendors to enable within their application. Selection of which defaults to use when multiple?
- 4. Select the final constructions. Need overhang construction.

BEP Simulation Data Components

BEP-BIM Simulation Environment

Identified Problems

- Lack of consistent vocabularies, even in the same discipline, e.g., ASHRAE standards
- Marginal understanding of the assumptions and constraints
- Traceability for ensuring fidelity of simulation models and conclusions is missing
 - How many "certified" high-performance buildings perform as promised?

Space 2:

WALL 1

Space 3.

Space 1

- Fundamental concepts for thermal and multisystem modeling are not supported or understood by software tools or users

 Architectural walls
 Thorntal space boundaries
 - by software tools or users

 2nd level space boundaries

Research Challenges

Change is underway.

- GSA: requiring building information models (BIM)
- CEC, CMU and others working on fundamentals for "processable" standards
- Contractors automating processes =>. new business models: CIS/2, agcXML
- ASHRAE: migrating to a unified data dictionary for processable standards
 - ASHRAE BIM Guide
- Drive to life cycle costing, reduced energy use, sustainability, integrated ICT
 - CIB Priority: Integrated Design and Delivery Solutions (October 2009)

Challenges

- Work process innovation vs sub-optimization
- Multidisciplinary collaboration with life cycle perspective
- Accurate simulation models, e.g., energy
- Information modeling, interoperability, systems integration
- Standard terminology for content and session messaging
- Collaborative management of shared virtual models
- Extensible code compliance checking
- Building the semantic foundation for federated information resources

Automated Code Checking Framework

-Notes:

components of the system

perform view generation.

modeling representations

Classification of Filters

Inner Model Filters Refined **Data Data Dictionary Dictionary** Refined Code Code

Semantics

Syntax

References

Logic

Cross Model Filters

Reference Information Models for Integrated Building Energy Analysis and HVAC Design

Problem

Current practices and measurement science are inadequate, cumbersome and do not integrate effectively to address the new requirements for achieving significant improvements in building energy performance

Objective

- Develop reference information models and alignment mechanisms for:
 - Building envelop
 - Building thermal model
 - Building systems, e.g., HVAC, energy management, plug loads
 - Mechanical equipment
 - Project information QC
- Demonstrate value of data dictionaries, processable standards and rule editors for achieving 21st century building engineering and code compliance

Approach

- Collaborative project building the team now
 - ✓ ASHRAE, LBNL, PNNL, CMU, NIST
- Analyze current tools, dictionaries and reference models
- Develop example solution for selected use cases
- Develop tools and recommendations for standards development, e.g., ASHRAE, NBIMS

Building Environment Division Advertised Positions

- 1. Information Systems for Engineering and Construction
- 2. Evaluation of Alternative HVAC&R Technologies
- 3. Performance Characterization of Photovoltaics and Energy Monitoring
- 4. Building Envelop Airtightness and Thermal Integrity
- 5. Technology and Standards for Building Systems Linkage to Smart Grid